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Particle therapy

• Ion and proton therapy hold advantages over conventional 
radiotherapy

• Physical benefits
• Dose distribution

• the way the particles interact with matter

• Linear energy transfer (LET)

• Biological benefits
• Radiobiological effectiveness (RBE)
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Ion therapy 

• At the moment ion therapy just means 
carbon ions

• Advantages of Carbon ions over protons 
• Improved Dose distribution 

• Higher LET correlating to higher RBE

• Disadvantages 
• Variable high energy RBE –difficult to 

model

• Dose tail

• Size of the required facility 
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Figure 11. A comparison Absolute dose per unit fluence for protons
and a range of ions.



Biologically carbon has issues

• Fragmentation is more prevalent in carbon 
ion therapy 
• Secondary particles from inelastic nuclear 

interactions between the ion and the tissue 
-which adds to the total damage 1-7

• The created low-z fragments have a longer 
range, creating a dose tail beyond the 
Bragg peak
• problematic for organs at risk

• The use of lighter ions like helium have a 
reduced fragmentation tail 1 ,4-6
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Figure 22. A description of the relative ionisation against depth for
330MeV/u carbon ions, highlighting the fragmentation tail



Accelerating carbon is not easy either 

• The difficulty in accelerating carbon can be 
expressed via beam rigidity, as depicted by 
Figure 2

• Currently 10 facilities that can provide 
carbon ions for therapy8

• China (2) Japan (5) Europe(3) 

• All synchrotrons

• The reduced beam rigidity of lighter ions 
allow for a smaller accelerator, and hence a 
reduced cost
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Figure 3. The bending radius necessary to bend the
beam against kinetic energy for fully stripped ions
up to carbon.



Why Helium?

• Used before at Berkeley (57-92) 8-9

• 2000 patients 

• Physically 
• Easiest to accelerate after protons –same MeV/u
• Less projectile fragmentation than carbon ions
• Half the scattering and sharper penumbra compared to protons 

• Biologically 
• Treatment plan comparison found helium RBE and conformity effects carbon and protons3

• TRiP98 and LEM IV model
• Mass is closer to protons it is easier to model with less RBE uncertainties
• RBE values found correlate with data from Berkeley experiments 

• Revival is not unrealistic
• Research has started in Heidelberg10(Apr 16)
• Interaction with matter study required as for carbon ions 
• Can only be studied at current carbon facilities 
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What are we doing about it
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• HEATHER - HElium ion Accelerator for radioTHERapy
• Helium therapy feasibility study using an FFAG 
• 2 stage nsFFAG accelerator 

• Can we isochronously accelerate 𝐻𝑒2+ to 900MeV (225 MeV/u)
• deliberately designed with 

𝑞

𝑚
=

1

2
• Can also accelerate 𝐶6+ (225/u approximately ~10cm depth

• If we can accelerate to 330 MeV/u we can image with 𝐻2
+

• Possibility to treat and image with the same machine 
• Carbon range increases to ~20cm 



• Superconducting ring 

• 1 MeV > 400 MeV

• 2.5m radius
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HEATHER Stage 1 

Figure 4. HEATHER stage 1 magnet layout showing
stable orbits from 0.5 MeV through to 400 MeV



• Superconducting racetrack

• 400 MeV > 900 MeV

• 4 x 4.5m radius
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HEATHER Stage 2 

Figure 5. HEATHER stage 2 magnet layout
showing stable orbits from 400 MeV through to
900 MeV



Isochronicity
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• Percentage difference compared to 
the mean ToF over all energies in 
COSY and OPAL 

• Good agreement between the two 
codes

• Initial Overlapping fringe fields 
supresses vertical tune and 
increases ToF

• Isochronous enough to accelerate 
at fixed frequency RF

Figure 6. HEATHER isochronicity variation
comparison in percentage across both stage
1 and stage 2 using COSY and OPAL



Tunes

• Acceptable tunes

• Good agreement between COSY 
and OPAL 

• Fast integer resonance crossing 
around 5MeV
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Figure 7. HEATHER tune map comparing the
tune for both stage 1 and 2 using COSY and
OPAL



Initial ‘ideal’ RF studies 

• 2 Single gap cavities

• 1st Harmonic, 1cm gap  
• Stage 1 2@300 KeV

• Stage 2 @ 500 KeV

• Overlapping fringe fields supresses 
vertical tune - hence large phase slip in 
stage 1

• 10.0913 MHz
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Figure 8. The total change in phase slip across
acceleration for stage 1 and stage 2 of HEATHER
whilst changing the operational frequency.



Realistic RF studies 

• 1st harmonic 10MhZ  -
𝜆

2
~ 15𝑚

• HUGE CAVITIES!!!

• Need to be looking at least  4th

• 4th harmonic 40MhZ  -
𝜆

2
~ 4𝑚

Keeping 300KeV cavities 

• Kilpatrick limit 

• Gap size needs to be at least 4cm

• May need to change cavity type
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Figure 9. An interpretation of the Kilpatrick limit for
copper for different cavity accelerating gap size



Stage 1 RF

• Changed to Delta-type double-gap 
resonators
• 4cm gap

• Typically used

• Simulated up to 4th harmonic 
successfully  at 300 KeV per gap and 
at 200 KeV per gap per cavity 
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Figure 10. Visual representation of the simulated double
gap delta type cavity in stage 1



Stage 1 RF

• 300 KeV - 4th Harmonic acceleration achievable with good phase acceptance (90°) with a total phase slip of 20°

• 200 KeV – 4th Harmonic acceleration achievable with phase acceptance at (80°) and a larger phase slip of 30°

Jordan.taylor@hud.ac.uk FFAG'17 - Cornell University 16

(Left) Figure 11. RF
phase space of
HEATHER stage 1 from
1 MeV to 400 MeV.

(Right) Figure 12. A
comparison of total
phase slip for 200 KeV
and 300 KeV gap
acceleration at
different harmonics.



Beam acceleration

• Accelerate a beam through with new RF and look at extraction for 
stage 

• 3 beam emittances
• 1𝜋 𝑚𝑚𝑚𝑟𝑎𝑑, 5𝜋 𝑚𝑚𝑚𝑟𝑎𝑑 and 10𝜋 𝑚𝑚𝑚𝑟𝑎𝑑

• Look at orbit extraction and emittance growth 

• Analysis still ongoing… 
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For 1 πmm mrad
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(Left) Figure 13. Normalised emittance for all 3 planes for an input geometric emittance of 1πmm mrad

• 104 particles simulated with no losses observed

• Emitance growth observed in the x plane 
• Cause unknown but we think it could be a higher order resonance



Orbit seperation

• no orbit overlapping observed 

• Clean separation observed for extraction

Jordan.taylor@hud.ac.uk FFAG'17 - Cornell University 19

(Left) Figure 14.
separation
difference in
mm between
each turn for a
given radius

(Right) Figure 15.
Extraction orbit
separation



Other emittances

• Typically expect what has been observed already
• Optimisation is still required 

• But no losses
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Figure 16. current
extraction orbit
separation for 5 π
mm mrad and 10 π
mm mrad
respectively



Conclusions 

• We need to increase the availability Ion therapy
• Helium could be the compromise

• There is no superior Ion -therapeutic advantage

• It is definitely feasible to isochronously accelerate He2+ to 900MeV 

• Most of the work has been done on stage 1
• 100 MeV/u He2+ is approximately 10cm tissue depth

• Potential to be a stand alone machine!
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